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Introduction
Programmed cell death (PCD) is essential for the normal devel-

opment of most, if not all, metazoans. The developmental time 

at which specifi c cells or tissues are removed is often specifi ed 

by the release of systemic or locally acting signaling molecules. 

During amphibian metamorphosis, for instance, thyroid hor-

mone signals cell death that leads to resorption of the tadpole 

tail and other larval tissues (Tata, 1994; Shi et al., 2001). During 

vertebrate limb development, separation of the limb digits requires 

death of the interdigital regions that is controlled by BMP 

 signaling (Zuzarte-Luis and Hurle, 2005). Although much is 

known about the temporal aspect of regulation in these and 

other systems, it is less well understood why some cells and 

 tissues, but not others, die in response to widespread signals 

(Vaux and Korsmeyer, 1999). A system that is particularly well 

suited to address this question is the removal of larval tissues 

by PCD during insect metamorphosis. In particular, the larval 

salivary glands of Drosophila melanogaster have been exten-

sively used to unravel signaling pathways that control develop-

mental cell death (Baehrecke, 2003; Yin and Thummel, 2005).

Death of the larval salivary glands takes place in the 

early pupa and is triggered by a pulse of the steroid hormone 

20-hydroxyecdysone (20E). The salivary glands survive an ear-

lier 20E pulse that leads to the destruction of the larval midgut 

(Jiang et al., 1997). The two consecutive hormone pulses that 

trigger these stage-specifi c responses are referred to in this 

study as the late-larval and the prepupal 20E pulse (Fig. 7). 

 Salivary gland death is foreshadowed by transcriptional activa-

tion of the death genes reaper (rpr) and head involution  defective 

(hid; Jiang et al., 2000). The protein products of both genes kill 

by interfering with caspase inhibition by the D. melanogaster 

 inhibitor of apoptosis protein (IAP) 1 (DIAP1). A critical target 

of DIAP1 is the apical caspase Dronc, which is required for 

 execution of salivary gland death (for review see Kornbluth and 

White, 2005). The mammalian cell death regulators Smac/Diablo 

and Omi/HtrA2, which are related to hid and rpr, act in a  similar 

way by antagonizing IAP function (Du et al., 2000; Verhagen 

et al., 2000; Hegde et al., 2002). Loss of hid, but not rpr, leads 

to salivary gland persistence (Peterson et al., 2002; Yin and 

Thummel, 2004). However, rpr has been shown to synergize 

with hid in bringing about salivary gland death (Yin and 

 Thummel, 2004). Induction of both hid and rpr requires the 

 up-regulation by 20E of transcription factors encoded by E93, 

Broad-Complex (BR-C), and E74A (Jiang et al., 2000; Lee et al., 

2000, 2002). In addition, full induction of rpr depends on direct 

binding of the 20E receptor EcR/Usp to a salivary gland en-

hancer of the gene (Jiang et al., 2000). Proper expression of the 

early hormone response genes and salivary gland death require 

the transient expression of the nuclear receptor βFtz-F1 in mid–

prepupae (Broadus et al., 1999). Thus, βFtz-F1 has the properties 
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of a competence factor for stage-specifi c hormone signaling 

(Woodard et al., 1994; Broadus et al., 1999). However, βFtz-F1 

expression is observed in almost all larval tissues (Yamada et al., 

2000), leaving the question open of  how the tissue specifi city of 

salivary gland death is achieved.

Tissue-restricted expression of 20E-regulated genes in the 

larval salivary glands has been shown to require coregulation by 

the transcription factor Fork head (Fkh; Lehmann and Korge, 

1996; Mach et al., 1996). fkh is already expressed in the salivary 

glands during embryogenesis, and is required for the proper 

 development of this organ (Weigel et al., 1989; Myat and Andrew, 

2000). Expression of fkh during larval development is restricted 

to the salivary glands and a small number of other tissues, in-

cluding the lymph glands and Malpighian tubules (Weigel et al., 

1989; Kuzin et al., 1994; Wang et al., 2004). The mammalian 

counterparts of Fkh are the FOXA1, 2, and 3 proteins (also 

known as HNF3α, β, and γ; Mazet et al., 2003; Lee and Frasch, 

2004), which are members of the larger family of Fkh/HNF or 

Fox transcription factors (Weigel and Jäckle, 1990; Gajiwala 

and Burley, 2000; Kaestner et al., 2000). Similar to fkh, FOXAs 

play a role in specifying tissue-specific responses to steroid 

 signaling, suggesting that aspects of FOXA function are evolu-

tionarily conserved (Friedman and Kaestner, 2006).

In fkh mutants, the embryonic salivary glands undergo 

 extensive apoptosis, which is foreshadowed by rpr and hid ex-

pression. Whereas this indicates that the presence of Fkh is re-

quired for survival of the embryonic salivary glands, other data 

suggest that the protein has an independent developmental role 

in secretory cell invagination (Myat and Andrew, 2000). Thus, 

fkh is part of a long list of developmental genes that cause ectopic 

cell death when impaired in their function. It has been estimated 

that nearly 20% of all D. melanogaster genes can cause PCD 

when mutated (White et al., 1994). It is diffi cult to establish 

whether these genes normally participate in the control of apop-

tosis, or whether activation of the default death pathway is an 

indirect result of aberrant development (Abrams, 1996).

We show that fkh plays a key role in specifying a cell 

death response to steroid signaling during normal development. 

Fkh is lost from the larval salivary glands at the onset of meta-

morphosis, and this loss is required for the subsequent steroid-

induced removal of the tissue. Ectopic expression of fkh rescues 

the salivary glands and premature knockdown of fkh leads to 

the premature 20E-induced activation of PCD and of the death 

genes hid and rpr. Transcription of fkh is down-regulated in a 

BR-C–mediated response to the late-larval 20E pulse, followed 

by a loss of the Fkh protein during prepupal development. These 

data indicate that Fkh protects the salivary glands from hormone-

induced death until a stage-specifi c, hormone-induced loss of 

the protein earmarks the tissue for destruction in response to 

 future hormone exposure.

Results
Salivary gland expression of fkh ceases at 
the onset of metamorphosis
We previously showed that fkh is transcriptionally down-

 regulated in the salivary glands in response to the late-larval 

20E pulse, and that this response is mediated, at least in part, by 

the early 20E response gene BR-C (Renault et al., 2001). However, 

it was not clear whether this down-regulation is a transient event 

followed by a resumption of fkh expression, or whether fkh 

 expression remains low or absent in prepupal and pupal salivary 

glands. To resolve this point, we dissected salivary glands from 

staged larvae, prepupae, and early pupae. Total RNA extracted 

from these glands was analyzed for fkh expression by Northern 

blot hybridization (Fig. 1 A). Consistent with our earlier results, 

we found that fkh is expressed in the salivary glands of early and 

mid-third instar larvae (Fig. 1 A, lanes P and -18), and that ex-

pression is turned off in an apparent response to the late- larval 

20E pulse (Fig. 1 A, lanes -8 and -4). Our Northern analysis did 

not detect fkh mRNA in early prepupae (Fig. 1 A, lane 0), and it 

did not indicate that expression resumes at any time before the 

salivary glands die at �14 h after puparium formation (APF). 

These data suggested that Fkh protein is lost from the larval sali-

vary glands before the tissue is removed in response to the pre-

pupal 20E pulse. To test this prediction and to determine the 

temporal profi le of Fkh protein expression at the larval–prepupal  

Figure 1. Developmental profi le of fkh mRNA and protein expression in 
the larval salivary glands. (A) Northern blot analysis of fkh expression dur-
ing late-larval and prepupal/pupal development. Total RNA was extracted 
from salivary glands dissected at the indicated times. The 0-h time point 
corresponds to the time of puparium formation. P designates prewandering 
third instar larvae. Expression of hid at 14 h APF foreshadows histolysis of 
the salivary glands. Hybridization to detect rp49 mRNA served as a con-
trol for loading and transfer. (B) Salivary glands were dissected at the indi-
cated times and stained with an anti-Fkh antibody. Note that Fkh protein 
gradually disappears from the salivary gland nuclei, but remains strong in 
the imaginal rings that will later form the adult salivary glands (arrows and 
inset). Bar, 250 μm.

 on M
arch 23, 2007 

w
w

w
.jcb.org

D
ow

nloaded from
 

http://www.jcb.org


FORK HEAD CONTROLS STEROID-TRIGGERED CELL DEATH • CAO ET AL. 845

transition, we stained salivary glands dissected from staged 

 animals with a Fkh antibody (Fig. 1 B). Strong immunostaining 

was observed in the cell nuclei at −4 h APF, a time at which fkh 

mRNA has almost disappeared from the salivary glands (Fig. 

1 A). Fkh protein is still present in considerable amounts in the 

glands of freshly formed prepupae (0 h APF). 2 h later, the con-

centration has greatly diminished, and by 4 h APF the protein 

is reduced to very low levels. Collectively, these data show that 

fkh is transcriptionally down-regulated in response to the late-

larval 20E pulse, and that the protein is still present in the cell 

nuclei in substantial amounts at the larval–prepupal transition. 

Subsequently, the protein is lost from the salivary glands during 

prepupal development.

Loss of Fkh is required for steroid 
induction of PCD in the salivary glands
We next asked whether the down-regulation of fkh might be 

 required for the salivary glands to undergo PCD in response to 

the prepupal 20E pulse. When fkh is ectopically expressed from 

a heat-inducible transgene in the transformant P[hs-Fkh111], the 

Sgs4 gene, which is normally repressed by the late-larval 20E 

pulse, fails to be down-regulated (Renault et al., 2001). We used 

the same transgenic line to express fkh ectopically at 10 h APF, 

shortly before the prepupal 20E pulse signals salivary gland 

 destruction. Pupae of the fkh-expressing line and heat-shocked 

control pupae (w1118) were dissected 20 h APF, which is �6 h 

after the salivary glands are normally destroyed. All fkh-

 expressing pupae still possessed larval salivary glands at this 

time (n > 37; penetrance = 100%), whereas no salivary glands 

could be found 20 h APF in any of the heat-shocked w1118  

control pupae or in non–heat-shocked P[hs-Fkh111] pupae. The 

structure of the cells and cell nuclei of most rescued salivary 

glands appeared well preserved, and the overall morphology of 

the glands was very similar to that of salivary glands before the 

onset of PCD (Fig. 2). In some of the rescued salivary glands, 

the cells appeared to be more round in shape and contained 

large vacuole-like structures, suggesting that the cell death 

 program had been initiated in these glands. However, in contrast 

to dying cells at 14 h APF, which were largely depleted of fi la-

mentous actin, these structures were still supported by portions 

of a well-developed actin cytoskeleton. At 26 h APF, the number 

of persisting salivary glands was substantially reduced (11% 

persistence; n = 18), which is consistent with the interpretation 

that some of the glands at 20 h APF had entered the death path-

way. We suspected that this was caused by a waning effect of 

the ectopic Fkh. Therefore, we tested whether survival of the 

salivary glands could be further prolonged by sustained expres-

sion of fkh. After the fi rst heat shock at 10 h APF, we applied a 

second heat shock at 16 h APF, which resulted in 67% salivary 

gland persistence at 26 h APF (n = 21). This suggests that acti-

vation of the cell death program can indeed be continuously 

suppressed by maintained fkh expression. Collectively, these 

data demonstrate that Fkh is suffi cient to prevent PCD in the 

larval salivary glands. Importantly, they suggest that the down-

regulation of Fkh before the prepupal 20E pulse provides 

 competence to the salivary glands to respond to this pulse by 

activation of the death pathway.

We wondered whether rescue of the larval salivary glands 

by fkh was a tissue-specifi c effect or whether ectopic fkh would 

block PCD in other tissues as well. To address this question, 

we ectopically expressed fkh shortly before the larval midgut 

normally dies. This did not lead to a delay in the initiation or 

execution of PCD in this tissue (Fig. S1, available at http://www

.jcb.org/cgi/content/full/jcb.200611155/DC1). Thus, our results 

support a model in which fkh specifi cally functions in the larval 

salivary glands in the developmental control of death.

Fkh represses expression of the death 
genes hid and rpr
In an attempt to identify genes that might mediate the survival 

function of Fkh, we analyzed the effect of fkh on the expression 

of genes that had previously been implicated in the control of 

salivary gland death. RNA was isolated from the salivary glands 

of P[hs-Fkh111] and w1118 control animals at different times after 

heat treatment at 10 h APF. Northern blots of this RNA were 

fi rst hybridized to detect expression of genes of the 20E-

 controlled signaling pathway (Fig. 3). The primary hormone 

 response genes E93, E74A, and BR-C, which are required for 

proper salivary gland death (Jiang et al., 2000; Lee et al., 2000, 

2002), were all expressed in the presence of ectopic Fkh. How-

ever, the amount of RNA and the timing of expression differed 

from the controls. Expression of all three genes started earlier 

when Fkh was present, and E74A and BR-C were also expressed 

more strongly. The E93 mRNA level appeared to be somewhat 

diminished, but did not go down by  16 h APF, as it did in the 

control (Fig. 3). BR-C failed to be down-regulated in 16 h APF 

salivary glands as well. These  data indicate that salivary gland 

survival in the presence of ectopic Fkh is not likely to be caused 

by a reduced expression of upstream regulators of steroid-

 induced death.

Figure 2. Forced expression of fkh prevents 
destruction of the larval salivary glands during 
metamorphosis. Prepupae of the line P[hs-Fkh111] 
were heat shocked at 10 h APF to induce ec-
topic expression of fkh, or kept at 25°C as non–
heat-shocked controls. The control animals’ 
salivary glands were destroyed at the normal 
time of �14 h APF, as they were in heat-
shocked w1118 animals (not depicted). Salivary 
glands at the time of fkh induction (A), dying 

salivary glands at 14 hAPF (B), and persistent salivary glands at 20 h APF (C and D) were stained with FITC-conjugated phalloidin and Hoechst 33342 to 
visualize fi lamentous actin and the cell nucleus. (C) Example of a salivary gland rescued by fkh that did not undergo a major structural change. (D) Example 
of a salivary gland rescued by fkh whose cells have begun to round up and form vacuole-like structures (arrows). Similar structures are formed by dying 
glands at 14 h APF (arrows). Bar, 100 μm.
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Next, we tested whether expression of the downstream 

death activators rpr or hid was changed by Fkh. We found that 

rpr mRNA was diminished when compared with the control, 

but still detectable. More strikingly, expression of hid, which 

was strongly expressed in the control glands, appeared to be 

completely suppressed by the ectopic Fkh (Fig. 3). As hid 

is known to be required for proper salivary gland death, this 

 suggested that repression of hid was at least partially responsible 

for the suppression of salivary gland death by Fkh.

In fkh mutants, the transcription factor Senseless (Sens) is 

not properly expressed and, similar to fkh mutants, sens mutants 

exhibit embryonic salivary gland apoptosis (Chandrasekaran 

and Beckendorf, 2003). We were therefore interested to also 

 determine the expression of sens in the presence and absence of 

Fkh. Hybridization with a sens probe showed that induction 

of fkh was followed by a brief burst of sens transcription at 12 h 

APF (Fig. 3), confi rming that sens is a target gene of Fkh. How-

ever, although massive overexpression of sens from a sens 

transgene delayed salivary gland death, it did not affect the 

 transcript levels of hid or rpr (unpublished data). Thus, sens 

uses a different pathway than fkh to protect cells from PCD 

 (unpublished data). This conclusion is consistent with the fi nding 

that forced expression of sens in fkh mutants does not rescue the 

embryonic cell death phenotype of fkh (Chandrasekaran and 

Beckendorf, 2003).

Collectively, our results show that at least part of the effect 

of Fkh on cell death is mediated by repression of the death genes 

hid and rpr. They further suggest a crosstalk between fkh and 

another survival pathway that acts through sens. We also note 

that fkh is epistatic to the cell death regulator E93 (Lee et al., 

2000), which is not suffi cient to initiate activation of the death 

pathway as long as fkh is expressed.

fkh coordinately represses IAP inhibitors 
and affects other apoptosis-related genes
To provide a broader foundation for our conclusions, we per-

formed a microarray analysis of gene expression at 14 h APF 

in the presence and absence of ectopic Fkh. Expression of fkh  
was induced by heat shock in P[hs-Fkh111] animals, and RNA 

extracted from the salivary glands of these and heat-shocked 

w1118 control animals was hybridized to Affymetrix Drosophila 

Genome Arrays. The microarray analysis confi rmed that hid and 

rpr were down-regulated in response to Fkh (16- and 2-fold, 

 respectively). In addition, it revealed that another known IAP 

inhibitor, Jafrac2 (Tenev et al., 2002), was down-regulated. 

Overall, the microarray analysis identifi ed 55 genes annotated 

Figure 3. Gene expression in the absence and presence of ectopic Fkh. 
w1118 control prepupae and prepupae of the P[hs-Fkh111] transformant 
were heat shocked at 10 h APF. Subsequently, RNA was extracted from the 
salivary glands at the indicated time points and analyzed by Northern blot 
hybridization. The bottom two autoradiographs show the results of a sec-
ond, independent experiment for hid and rp49. Hybridization to detect 
rp49 mRNA served as a control for loading and transfer.

Table I. Apoptosis-related genes that respond to Fkh

Gene Fold change Gene ontology FlyBase ID

CG15097 −28.1 e. a.; actin binding FBgn0034396

CG12789 −21.4 e. a.; scavenger receptor FBgn0025697

Companion of reaper −18.2 e. a.; DNA damage response FBgn0030028

Wrinkled (hid) −16.0 IAP antagonist FBgn0003997

CG3571 −9.9 e. a.; actin binding FBgn0037978

cactus −4.6 survival signaling FBgn0000250

Jafrac2 −4.4 IAP antagonist FBgn0040308

CG7228 −4.4 e. a.; scavenger receptor FBgn0031969

Rep1 +5.0 inhibitor of caspase-activated DNase FBgn0024732

Protein kinase 61C (PDK1) +8.7 Akt survival signaling FBgn0020386

capricious +9.2 e. a.; cell adhesion FBgn0023095

Apc2 +9.8 e. a.; microtubule binding FBgn0026598

decapentaplegic +11.1 survival signaling FBgn0000490

e. a. indicates that the association of the gene with apoptosis is inferred from electronic annotation. A complete list of all apoptosis-related genes that showed an at 
least 1.5-fold response to fkh is provided in Table S1.
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as functioning in apoptosis whose expression was at least 1.5-

fold changed by Fkh (Tables I and S1). hid was among the four 

most strongly down-regulated genes, as was Companion of 
reaper, a gene that has been reported to synergize with hid to 

promote apoptosis (Meier and Silke, 2003). Genes encoding the 

D. melanogaster Apaf-1 orthologue Ark and the apical caspase 

Dronc (Nc) were down-regulated by approximately twofold by 

Fkh. As these proapoptotic proteins are known to be required 

for the destruction of the larval salivary glands (Cakouros et al., 

2004; Daish et al., 2004; Waldhuber et al., 2005; Mills et al., 

2006), down-regulation of the corresponding genes is likely to 

contribute to the antiapoptotic effect of fkh. The two Bcl-2 

 family members of D. melanogaster, Buffy and debcl, were 

2- and 2.5-fold up-regulated by fkh. We found that fkh-independent 

overexpression of either Buffy or debcl using the UAS/Gal4 

 system did not affect salivary gland death (unpublished data). 

These genes therefore have no, or at least no essential, role in 

mediating the effect of fkh. Interestingly, among the genes 

strongly up-regulated by fkh was the D. melanogaster PDK1 

orthologue. PDK1 is an essential activator of the protein kinase 

Akt (Rintelen et al., 2001). As signaling through the PI3K–Akt 

pathway can protect salivary glands from PCD (Liu and 

Lehmann, 2006), PDK1 is likely to contribute to the survival 

function of fkh. In summary, the microarray data suggest that 

Fkh  ensures survival by the coordinated repression of IAP 

 antagonists and the regulation of other apoptosis-related genes. 

In particular, they confi rm that the death gene hid, which is 

 required for  salivary gland death (Yin and Thummel, 2004), is a 

prime candidate for a target of the survival function of fkh.

Loss of fkh is suffi cient to create 
competence for a death response 
to steroid signaling
Our results showed that the down-regulation of fkh in response 

to the late-larval 20E pulse is required for proper induction of 

hid and rpr in response to the prepupal 20E pulse and subse-

quent death of the salivary glands. This prompted us to ask 

whether down-regulation of fkh is also suffi cient to specify 

these responses to steroid signaling. To address this question, 

we down-regulated fkh prematurely in early third instar larvae 

using RNAi. We generated transgenic fl y stocks that use a  heat-

shock promoter to drive expression of a double-stranded (ds) 

fkh RNA (Lam and Thummel, 2000). Northern analysis con-

fi rmed that these lines strongly expressed fkh dsRNA upon heat 

treatment (unpublished data), followed by a dramatic decline in 

the amount of Fkh protein (determined by Western analysis; 

Fig. S2, available at http://www.jcb.org/cgi/content/full/jcb

.200611155/DC1). To further ascertain that expression of the 

dsRNA led to an effective knockdown of fkh activity in the sali-

vary glands, we examined the expression of known target genes 

of fkh by Northern blot hybridization. RNA was isolated from 

the salivary glands of staged fkh dsRNA-expressing animals 

and w1118 controls. A Northern blot of this RNA was hybridized 

to detect expression of the Sgs4 and sage genes (Fig. 4). Sgs4 is 

a well-characterized target gene of fkh that encodes a glue pro-

tein and is strongly expressed in third-larval instar salivary 

glands until puparium formation (Lehmann and Korge, 1996). 

As expected, large amounts of Sgs4 mRNA were detected in the 

salivary glands of the heat-shocked control larvae. In striking 

contrast, Sgs4 mRNA was absent from the salivary glands of 

the fkh dsRNA-expressing larvae. sage encodes a bHLH tran-

scription factor that is enriched in larval salivary glands and 

down-regulated at the larval–prepupal transition (Li and White, 

2003). Recently, it has been shown that sage is directly acti-

vated by fkh, although some sage expression is still observed 

in a fkh mutant (Abrams et al., 2006). Consistent with these 

fi ndings, sage RNA was severely, but not completely, reduced 

after fkh dsRNA expression (Fig. 4). These data indicate that fkh 

function in the larval salivary glands is severely compromised 

by RNAi. Importantly, the RNAi knockdown had no effect on 

overall development and growth of the larvae, as heat-shocked 

P[hs-fkhRNAi-4] larvae pupariated at the same time and formed 

prepupae of similar size as heat-shocked w1118 control larvae 

(unpublished data).

Next, we inspected salivary glands that had been treated 

with fkh dsRNA for signs of PCD. Staining with acridine orange 

revealed no difference between fkh RNAi and control glands 

before puparium formation (Fig. 5, A and B). This  indicated 

that the premature down-regulation of fkh by itself was not suf-

fi cient to cause cell death. However, salivary glands after pupar-

ium formation exhibited a progressive loss of tissue integrity 

and showed strong nuclear acridine orange staining (Fig. 5, 

D and E). The salivary glands of heat-shocked control animals 

showed no nuclear acridine orange staining, or any signs of 

 tissue disintegration, and died at the normal time in response to 

the prepupal 20E pulse (Fig. 5 C). The nuclei of the salivary 

glands of fkh dsRNA-treated animals were stainable with acri-

dine orange as early as 4 h APF (Fig. 5 D). At 9 h APF, salivary 

glands could still be dissected from some, but not all, prepupae. 

Figure 4. The transcriptional response to the late-larval 20E pulse in the 
absence of Fkh. w1118 and P[hs-fkhRNAi-4] third instar larvae were heat 
treated, and RNA was extracted from salivary glands at the indicated 
times before and after pupariation (0 h is the time of puparium formation). 
A Northern blot of the RNA was hybridized with probes detecting mRNA 
of the indicated genes. The comparatively weak signal for E74A in the −4 h 
control lane is most likely caused by the very narrow window of E74A 
 expression at this time (Jiang et al., 2000) and the diffi culty in collecting 
synchronized larvae (see Materials and methods). Hybridization to detect 
rp49 mRNA served as a control for loading and transfer.
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These glands contained acridine orange–positive cell nuclei, but 

the cell boundaries, which were clearly discernable in the control 

glands, had disappeared (Fig. 5 E). Salivary glands could occa-

sionally also be found at later time points. However, the cellular 

structure and shape of these glands were severely compromised. 

This suggests that, although the death program had been pre-

maturely activated, the fi nal steps of tissue disintegration and 

 removal could not be performed properly. We overexpressed hid 

in early prepupae from a heat-inducible transgene and found 

that the salivary glands responded in a similar way, showing 

 nuclear acridine orange staining, but persisting for several more 

hours (unpublished data). Collectively, these results strongly 

suggested that loss of fkh was suffi cient to specify a cell death 

response to 20E signaling.

To further test this conclusion, we asked whether death 

gene expression was changed after the knockdown of fkh, and, 

if yes, whether this change occurred in response to the late-larval 

20E pulse or earlier. Northern blot hybridization revealed that 

hid and rpr were strongly activated at or shortly before pupar-

ium formation in salivary glands that had been treated with fkh 

dsRNA. hid reached a peak in expression at 4 h APF, whereas 

rpr was induced earlier, already reaching a very high transcript 

level at 0 h APF (Fig. 4). This profi le is strikingly similar to the 

temporal profi le of hid and rpr expression observed in response 

to the late-prepupal 20E pulse. Also at this time, rpr shows 

maximal expression earlier than hid, which peaks in expression 

several hours after the early hormone response genes E74A and 

BR-C are fi rst detected (Jiang et al., 2000). This suggests that, 

similar to the response in late-prepupal glands, hid induction 

after premature loss of fkh is a secondary hormone response 

mediated by E74A and BR-C. This hypothesis is supported by 

the expression profi les of E74A and BR-C, which are very similar 

in late-larval and -prepupal salivary glands (Jiang et al., 2000). 

Hybridization with an E74A probe confi rmed that this early 

 response gene is induced at the normal time after knockdown of 

fkh (Fig. 4). Collectively, the morphological and gene expression 

data demonstrate that loss of fkh leads to a premature activation 

of the death program in response to the late-larval 20E pulse. 

They identify hid and rpr as two key death regulators whose 

hormone responsiveness is controlled by Fkh.

fkh is derepressed in BR-C mutants that 
are defective in salivary gland death
The response of fkh to 20E signaling at the end of larval devel-

opment is mediated, at least in part, by the early 20E-inducible 

gene BR-C (Renault et al., 2001). The down-regulation of fkh 

that is normally observed at this time does not occur in 2Bc mu-

tants of BR-C. The continued expression of fkh in these mutants is 

suffi cient to maintain expression of the Sgs4 gene in prepupal 

salivary glands. 2Bc mutants also show defects in salivary gland 

death, which are even more pronounced in mutants of the rbp 

subfunction of BR-C (Restifo and White, 1992; Jiang et al., 

2000). Collectively, these observations raised the possibility 

that a derepression of fkh might be responsible for the per-

sistence of the larval salivary glands in BR-C mutants. To test this 

possibility, we performed a Northern analysis of fkh expression 

in the salivary glands of late prepupae and early pupae of the 

rbp5 mutant (Fig. 6). As expected, the salivary glands of control 

animals did not show expression of fkh shortly before their de-

struction, at 12 or 14 h APF. In striking contrast, salivary glands 

of hemizygous rbp5 mutant animals exhibited strong expression 

of fkh mRNA both at these times and also in 16-h pupae. In 16-h 

control pupae, the disintegration of the salivary glands was too 

far advanced to obtain RNA for a Northern analysis. These data 

indicate that fkh is indeed derepressed in the persisting salivary 

Figure 5. RNAi-mediated knockdown of fkh leads to premature salivary 
gland death in response to the late-larval 20E pulse. Third instar larvae of 
P[hs-fkhRNAi-4] and w1118 were collected after the second–third larval molt 
and subjected to three consecutive heat shocks. Salivary glands were dis-
sected from animals before and after the late-larval 20E pulse and stained 
with acridine orange. (A and B) Salivary glands of early wandering larvae 
of neither w1118 nor P[hs-fkhRNAi-4] show nuclear acridine orange staining. 
However, the cytoplasm and nucleoli are stained (see Fig. S3), leading to 
a speckled appearance of the glands. (C and E) At 9 h APF, the salivary 
glands of P[hs-fkhRNAi-4] prepupae have lost their cellular structure and show 
strong nuclear acridine orange staining, whereas w1118 control glands 
show no nuclear acridine orange staining and have an intact cellular struc-
ture. Note that the staining of the nucleoli observed at earlier stages has 
disappeared. (D) P[hs-fkhRNAi-4] salivary gland already showing strong 
signs of cell death at 4 h APF. Bars, 100 μm.

Figure 6. The BR-C mutant rbp5 exhibits strong derepression of fkh. Sali-
vary glands were dissected at the indicated time points from males of the 
genotype y rbp5/Y and from Binsn/Y control males. Total RNA extracted 
from the glands was analyzed by Northern blot hybridization for the pres-
ence of fkh and hid RNA. Hybridization with an rp49 probe served as a 
control for loading and transfer. RNA from 16 h APF control animals could 
not be obtained because of the advanced histolysis of the salivary glands 
at this time.
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glands of BR-C mutants. Hybridization of the Northern blot 

with a hid probe confi rmed that this death gene was not properly 

induced in the rbp5 mutant (Jiang et al., 2000). The expression 

of fkh in rbp5 provides an explanation for the persistence of lar-

val salivary glands in BR-C mutants and identifi es fkh as at least 

one critical target of the function of BR-C in programmed cell 

death. These results lend further support to a model in which fkh 

is tied into the hormonal signaling pathway through the 20E-

controlled BR-C gene (Fig. 7).

Discussion
Developmental cell death in invertebrates and vertebrates is of-

ten controlled by systemic signals, which provide the trigger for 

cell and tissue destruction (Jacobson et al., 1997; Baehrecke, 

2002). However, it is not well understood why these signals in-

duce death only at a particular time and only in some cells and 

tissues, but not in others. The experimental data presented in 

this study support a model that explains how a specifi c tissue of 

the fruit fl y D. melanogaster is singled out for destruction in re-

sponse to the steroid hormone 20E (Fig. 7). It  explains why the 

larval salivary glands are destroyed in response to a particular 

20E pulse, the prepupal pulse, and why they survive earlier 

pulses of the same hormone. It thus provides a framework for 

our understanding of how tissue-specifi c developmental cell 

death is precisely timed.

In more general terms, our data suggest that a key event in 

acquiring competence for a cell death response to a systemic 

signal is the loss of a tissue-specifi c survival factor. This loss 

occurs in response to a temporal signal that precedes the death-

inducing signal. In the salivary glands, the tissue-specifi c sur-

vival factor is Fkh, and the signal that leads to the loss of Fkh is 

provided by the late-larval 20E pulse. Our data show that loss of 

Fkh is required for the death response to the prepupal 20E pulse 

(Fig. 2). They further suggest that the salivary glands survive 

all previous hormone pulses because they are protected by the 

presence of Fkh (Fig. 1). Thus, Fkh not only plays a key role 

in determining the tissue selectivity of salivary gland death, 

but also in the proper timing of this event. Elimination of Fkh 

is mediated by the 20E-induced transcription factor BR-C 

 (Renault et al., 2001). We fi nd that fkh is strongly expressed at 

the normal time of salivary gland death in the rbp5 mutant of 

BR-C, which demonstrates that BR-C is required for the continued 

repression of fkh beyond the larval–prepupal transition (Fig. 6). 

The derepression of fkh in rbp5 is suffi cient to explain why the 

salivary glands do not die in the mutant.

Loss of the survival factor renders critical death regulators 

responsive to the death-inducing signal. In the salivary glands, 

these death regulators are the IAP antagonists hid and rpr, 

which together are required for salivary gland death (Yin and 

Thummel, 2004). In the absence of Fkh, the two genes are in-

ducible by hormone, as shown by the premature induction of 

hid and rpr after RNAi knockdown of fkh (Fig. 4). Importantly, 

loss of fkh by itself is not suffi cient to activate hid and rpr, or to 

kill the salivary glands within the �36 h between fkh knock-

down and the late-larval 20E pulse. Strong activation of hid and 

rpr and death only occur in response to the hormonal signal. 

After elimination of Fkh, the hormone induces expression of 

hid and rpr at a level that is suffi cient to kill (Fig. 5). This obser-

vation supports the conclusion that there are no other repressors 

present in prepupal salivary glands that are suffi cient to prevent 

hormonal induction of cell death. All that seems to be needed to 

induce death is the hormone 20E and one or more 20E-induced 

transcriptional activators.

Previous work has shown that E74A and BR-C play the 

role of hormone-induced activators of hid and rpr in late-prepupal 

salivary glands (Jiang et al., 2000). Both E74A and BR-C are 

required for the induction of hid, which has the characteristics 

of a secondary-response gene. Intriguingly, the activation of hid 

after premature loss of fkh shows the same secondary-response 

characteristics, suggesting that the same 20E-induced transcrip-

tion factors are responsible for the activation of hid by the late-

larval 20E pulse (Fig. 4). Full induction of rpr depends not only 

on BR-C but also on direct binding of the hormone receptor 

EcR/Usp to the gene (Jiang et al., 2000). Thus, rpr has charac-

teristics of both a primary- and secondary-response gene, lead-

ing to an earlier induction of the gene in response to the prepupal 

20E pulse. Again, premature activation in response to the late-

larval pulse shows the same temporal characteristics (Fig. 4). 

This suggests that E74A and BR-C are responsible for the 

Figure 7. Model for the acquisition of compe-
tence by the salivary glands to respond to steroid 
signaling with PCD. Salivary gland death is trig-
gered by the prepupal 20E pulse. This pulse is 
preceded by the late-larval 20E pulse that triggers 
the destruction of the larval midgut. The model 
 illustrates, using hid as an example, how a fkh-
 dependent switch in the hormone responsiveness 
of critical death genes makes the salivary glands sus-
ceptible to steroid-triggered death. Our data show 
that rpr and possibly other death genes are subject 
to a similar control by fkh. The concerted action of 
these genes ensures the demise of the salivary 
glands in response to the prepupal 20E pulse. See 
the text for further discussion of the model.
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premature activation of hid and rpr after knockdown of fkh, 

and that such an activation is normally prevented by the pres-

ence of Fkh. Our immunostaining data support this conclusion 

by showing that Fkh protein is still present in the larval sali-

vary glands at the time when the two genes are active. It only 

disappears from the tissue 2–4 h APF (Fig. 1 B). These data 

explain why E74A and BR-C mediate a death response exclu-

sively to the prepupal 20E pulse, despite a very similar induc-

tion pattern of the two genes in response to the preceding 

late-larval pulse.

Our results exclude that repression of hid and rpr is medi-

ated by the fkh target sens. Repression may thus be mediated by 

another downstream target of fkh or by direct binding of Fkh to 

transcriptional control regions of hid and rpr. In support of the 

latter possibility, we found that the fi rst intron of hid contains a 

cluster of 13 Fkh binding sites. One of these sites exhibits strong 

binding of Fkh in in vitro DNA-binding assays, whereas the 

other sites have weak to moderate binding affi nity (unpublished 

data; de Banzie, J., personal communication). Although this re-

gion may function as a silencer of hid expression in vivo, lacZ 

reporter gene assays in transgenic fl ies did not reveal that it has 

an enhancer function. We were not able to identify a similar 

binding site cluster in rpr.

Our microarray data identify other apoptosis-related genes 

that are down- or up-regulated by Fkh. Therefore, it is likely 

that Fkh protects cells from death by interfering with the cell 

death program at multiple levels. Regulation of genes such as 

Ark, Dronc, or PDK1, is likely to mediate a general function of 

fkh as a survival factor. This function appears to be required for 

the survival of the developing salivary glands during embryo-

genesis (Myat and Andrew, 2000). However, it is not essential 

for the survival of postembryonic salivary glands, as demon-

strated by the failure of the glands to die in the absence of Fkh 

during prepupal development. Our data confi rm this conclusion 

by showing that the salivary glands fail to undergo PCD within 

the �36 h between the premature knockdown of fkh and the 

steroid induction of death. They separate a general protective 

function of Fkh from a specifi c function that Fkh has in the con-

trol of steroid-induced developmental PCD.

Tissue-specifi c developmental cell death controlled by 

steroid hormone plays an important role not only in insects but 

also in humans and other vertebrates. Glucocorticoids, for in-

stance, control the development of the immune system by kill-

ing specifi c types of thymocytes (Ashwell et al., 2000). Many 

genes regulated by glucocorticoids are coregulated by the verte-

brate FOXA counterparts of Fkh (Friedman and Kaestner, 

2006). It will be interesting to see whether FOXAs have evolu-

tionarily conserved functions in glucocorticoid-induced death 

and in other types of developmental cell death.

Materials and methods
Plasmid construction and P element transformation
For construction of the P[fkhRNAi] transformation plasmid, a segment of the 
coding region of fkh (corresponding to amino acid positions 189–435) 
was amplifi ed by PCR from the plasmid fkh-pET3b. Two copies of the prod-
uct were then sequentially cloned in a head–head orientation into the trans-
formation vector pCaSpeR-hs-act (Thummel et al., 1988), leaving a 130-bp 

spacer between the copies. Five independent transformant lines were 
 obtained, which all expressed fkh dsRNA upon heat shock; a detailed de-
scription of the construction steps can be obtained upon request). P element 
injections were performed by BestGene, Inc.

Developmental timing and Northern blot hybridizations
Third instar larvae were staged using the blue gut method as previously de-
scribed (Andres and Thummel, 1994). For the −4-h time point (clear gut) 
in Fig. 1 A, only salivary glands that had completed glue protein secretion 
into the gland lumen were used. For the −4-h time point in Fig. 4, this ad-
ditional criterion could not be used because glue production was severely 
affected in heat-shocked P[hs-fkhRNAi-4] animals. Prepupae and pupae were 
staged by collecting freshly formed prepupae within 30 min of puparium 
formation and keeping them on damp fi lter paper at 25°C for the indicated 
lengths of time.

For the Northern analysis of fkh expression in a BR-C mutant back-
ground, we used the y rbp5/Binsn stock (Belyaeva et al., 1980). Hemi-
zygous mutant male larvae of this stock (y rbp5/Y) can be distinguished 
from males carrying the Binsn X balancer (Binsn/Y) by the yellow color of 
their mouth hooks and denticles (y phenotype; Binsn carries y+ allele). The 
males were separated based on this phenotype, and salivary glands were 
dissected for RNA extraction.

RNA extraction, fractionation by gel electrophoresis, transfer to ny-
lon membranes, and hybridization with radioactive DNA probes were per-
formed as previously described (Lehmann et al., 2002). Probes were 
derived by restriction digest from the following plasmids: fkh, 848-bp Afl II–
BglII fragment from RE03865; Sgs4, 1-kb EcoRI–HindIII fragment from 
pOW3Sal; sens, 1.4-kb EcoRI fragment from pBS-sens (provided by 
H. Bellen; Baylor College of Medicine, Houston, TX); BR-C, 480-bp StuI–PvuII 
fragment from paaDM527; and E93, 1.6-kb AccI fragment from E93 
cDNA (provided by C. Thummel; University of Utah, Salt Lake City, UT). 
hid, rpr, E74A, and rp49 probes were prepared as previously described 
(Lehmann et al., 2002).

Ectopic expression and RNAi experiments
For ectopic expression of fkh, prepupae of the transformant line P[hs-Fkh111] 
and w1118 control prepupae were collected at 9.5 h APF and incubated for 
30 min in a 37°C water bath. The animals were transferred to damp fi lter 
paper in a Petri dish and kept at 25°C until the salivary glands were dis-
sected for RNA extraction or microscopic analysis. For RNAi knockdown 
of fkh, third instar larvae of P[hs-fkhRNAi-4] and w1118 were collected within 
3 h of the second–third larval instar molt and transferred to fresh yeast 
paste. Larvae were kept at 25°C and subjected to heat shocks, as de-
scribed in the previous section, at 12, 26, and 40 h after collection. The 
salivary glands of larvae expressing fkh dsRNA were defective in glue pro-
tein production and showed a reduced size compared with w1118 control 
glands (Fig. 5). Glue proteins make up >30% of the total gland protein in 
wandering third instar larvae (Korge, 1977), suggesting that the reduced 
organ size was caused by smaller cell size and not by reduced cell num-
ber. Staining of the salivary glands with the nuclear dye Hoechst 33342 
confi rmed this prediction. Impaired glue production was an expected result 
of the knockdown of fkh, as expression of all glue protein genes, including 
Sgs4 (Fig. 4), depends on fkh (Mach et al., 1996; Roth et al., 1999; our 
microarray data).

Histochemical staining and Western analysis
Acridine orange staining of salivary glands and midguts was performed as 
previously described (Jiang et al., 1997). Independent of the genotype of the 
animals, the salivary glands of both heat-shocked and non–heat-shocked 
wandering larvae had a speckled appearance after acridine  orange 
staining (Fig. 5). Microscopic analysis of single nuclei at high magnifi -
cation revealed that this was caused by staining of the nucleoli, which 
stain brightly with acridine orange (Nash and Plaut, 1964). The polytene 
chromosomes did not show staining above background (Fig. S3).

Staining of salivary glands with Fkh antibodies, FITC-labeled phal-
loidin (Alexis Biochemicals), and Hoechst 33342 (AnaSpec, Inc.), was 
performed using standard procedures. The anti-Fkh antibody was affi nity 
purifi ed and used at a dilution of 1:500 (Lehmann and Korge, 1996). 
Bound Fkh antibodies were detected with a Cy2-conjugated goat anti–
guinea pig secondary antibody (1:400; Jackson ImmunoResearch).

For Western blot analysis (Fig. S2), Fkh antiserum was used at a di-
lution of 1:2,000, and bound antibody was detected using a peroxidase-
conjugated goat anti–guinea pig secondary antibody (1:5,000; Jackson 
ImmunoResearch Laboratories).
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Images of the fl uorescently labeled tissues shown in Figs. 1, 2, and 
5 were taken with an inverted confocal microscope (TCS SP2; Leica), over-
laying a z series of 30–50 sections. Tissues were mounted in PBS, and im-
ages were acquired with a 10×/0.40 NA (Figs. 1 and 5) or 20×/0.70 
NA (Fig. 2) HC PL APO objective (eyepiece lens 10×/22 HC PLAN; 
Leica). Bright-fi eld images shown in Fig. S1 were taken with a 3–charge-
coupled device digital imaging camera (KY-F75U; JVC) using a microscope 
(Axioskop 2 Plus; Carl Zeiss MicroImaging, Inc.) and Auto-Montage 
 imaging software (Syncroscopy). The differential interference contrast and 
fl uorescent images shown in Fig. S3 were taken with a camera (AxioCam 
MRm; Carl Zeiss MicroImaging, Inc.) using an Axioskop 2 Plus microscope 
and AxioVision 4.1 software. 2.5×/0.075 NA (Fig. S1) and 40×/0.75 
NA (Fig. S3) Plan-Neofl uar objectives (Carl Zeiss MicroImaging, Inc.) were 
used for image acquisition (10×/23 eyepiece lens). Images were pro-
cessed using Photoshop 7.0 (Adobe), with uniform adjustments made to 
brightness and contrast, and were assembled using Illustrator CS2 (Adobe). 
All images were taken at room temperature.

Microarray analysis
P[hs-Fkh111] prepupae and w1118 control prepupae were heat shocked at 
9.5 h APF for 30 min at 37°C and the salivary glands dissected 4 h later. 
Samples were prepared in three replicates from the P[hs-Fkh111] glands 
and in two replicates from the w1118 control glands. Total RNA was isolated 
using Trizol (Invitrogen) and purifi ed on RNAeasy columns (QIAGEN). 
 Hybridization to Affymetrix Drosophila Genome Arrays was performed by 
the microarray facility of the University of Maryland Biotechnology Center. 
Raw data provided by the Center were normalized, pooled, and com-
pared using dChip (Li and Wong, 2001). Analysis was performed using 
the PM-only model with outlier detection. The datasets were fi ltered for 
genes that showed an at least 1.5-fold relative change in their mean ex-
pression and an absolute expression change of at least 400. Query for 
apoptosis-related genes was performed based on annotation using dChip 
and Microsoft Access.

Online supplemental material
Fig. S1 shows that misexpression of fkh does not affect PCD in the larval 
midgut. Fig. S2 shows a Western blot analysis of Fkh protein expression after 
knockdown of the gene by RNAi and after overexpression from P[hs-Fkh111]. 
Fig. S3 shows that acridine orange strongly stains the nucleoli of salivary 
gland nuclei of normal w1118 third instar larvae. Table S1 lists all apoptosis-
related genes identifi ed by microarray analysis that showed an at least 
1.5-fold response to fkh.The online version of this article is available 
at http://www.jcb.org/cgi/content/full/jcb.200611155/DC1.
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